
AWS Key Management
Services Overview

With Hands-on

Agenda
● Encryption Primer

○ Symmetric, Asymmetric Encryption
○ Hashing, Digital Signature & Digital Certificates

● KMS Services Overview
○ Different key types, Key hierarchy
○ Customer Master Key
○ AWS vs Customer Managed Key
○ Client side vs Server side Encryption

● KMS Demo

Symmetric Key Encryption

Diagram source: http://jrruethe.github.io/blog/2014/10/25/cryptography-primer/

Symmetric Key Encryption Summary
● Symmetric Key Encryption uses same key for Encryption & decryption
● Encryption Algorithms are not held as secret
● Some popular Symmetric Key Encryption algorithms are AES, 3DES, RCx,

Blowfish etc
● Know the difference between Algorithms vs Keys
● Key exchange has to be done out of band
● Symmetric Key Encryption typically uses smaller key sizes and is fast
● But prone to Man in the middle attack (if the key exchange is done in an

insecure way)

Man-in-the Middle Attack

Diagram source: http://jrruethe.github.io/blog/2014/10/25/cryptography-primer/

Man-in-the Middle Attack Summary
● A man in the middle (MiTM) attack happens when someone is intercepting/tampering your

communication line by placing themselves in-line in between you and the other person.
● In MiTM, an attacker is able to tamper with the communication line without either party knowing;

Compare this with Passive sniffing or eavesdropping, where only “bad person” is collecting
information

● In the previous slide, User1 is thinking that he/she is talking to User2 and vice versa
● But the “bad person/attacker” is performing an active MiTM by impersonating as User2 with User1

and vice versa
● This situation can be alleviated if both users encrypt their communications using “key” shared

between them using a secure channel (and ensure the man in the middle doesn’t gets hold of it)
● Not a good idea to use the same key all the time with Symmetric key encryption;

○ “Session key” - Unique key for each transaction/flow
○ Challenge is to securely transfer them between trusted parties
○ Can Asymmetric key encryption help?

Asymmetric Key Encryption

Diagram source: http://jrruethe.github.io/blog/2014/10/25/cryptography-primer/

Asymmetric Key Encryption Summary

● Asymmetric key encryption algorithms use two keys to perform crypto
operations

● Two keys are called Private/secure & Public key, they are mathematically
connected

● Each user would be using a pair of key to perform encryption/decryption
operation

● Private/secure should never be shared with anyone
● Public key can be shared with others

Asymmetric Key Encryption Summary
● How to communicate securely using Asymmetric key encryption?
● Users generate a pair of keys for themselves using well known asymmetric

key encryption algorithms
● Users will safe their own private/secure key and share public with others they

want to communicate with
● If user1 wants to communicate with user2,

○ User1 uses publicly available user2’s public key to encrypt the communication
○ Sends the encrypted data to user2
○ User2 uses his/her private key to decrypt the data
○ Data encrypted with user2’s public key can only be decrypted using user’s private key

● RSA, ECC, DSA, DH key exchange are some well known Asymmetric key
encryption algorithms (uses typically large key sizes)

● What if user2 is an impersonator and tricks user1 with his public key?

Hashing

Diagram source: http://jrruethe.github.io/blog/2014/10/25/cryptography-primer/

● Hashes are used to generate digital
fingerprints of a message

● Hashes don’t encrypt data
● Hashing algorithms take variable length

data and provides a fixed length data
● Two messages that are identical will

produce identical hash
● Even if there is a single bit of difference

between two messages, hash won’t match
● Used for checksum calculations, storing

passwords

Digital Signature

Diagram source: http://jrruethe.github.io/blog/2014/10/25/cryptography-primer/

● Provides assurance that a message
indeed came from a person

● If a user encrypts a message with his/her
own private key, it can be decrypted by
anyone (using the public key pair)

● But one can assume that the message
came from the owner of the private key

● When someone encrypts a message using
their private key it’s called Digital signature

● Since Asymmetric key encryption uses
large keys, it’s recommended to create a
hash of the message and then use that to
encrypt

● Send both the original message and hash
● Receiver can calculate the hash from the

rxed message and compare the decrypted
hash rxed from the sender

E
Encrypt Hash with
Bob’s Private Key

D
Decrypt Hash with
Bob’s Public Key

End to End Secure Communication/Digital Signature

Diagram source: http://jrruethe.github.io/blog/2014/10/25/cryptography-primer/

● Putting all these concepts together, we get
what’s called as self-signed certificate

a. Bob generates a session key
b. Uses Mary’s pub key to encrypt and send it to

her
c. Mary decrypts the message (using her own

private key) to get the session key
d. Bob encrypts his public key using session key

and sends the encrypted message to Mary
e. Mary decrypts the message using session

key to get Bob’s public key
f. Bob creates a hash of his public key

g. Bob encrypts the hash using his private key
and send it to Mary

h. Mary decrypts the hash using Bob’s pub key
i. Mary calculates the hash of Bob’s public key

and compares with what Bob has sent

a

b

c
d e

f

g h

i

Digital Certificates

Diagram source: http://jrruethe.github.io/blog/2014/10/25/cryptography-primer/

● Almost similar to the process outlines in
the previous slide

● But the public key of an user or entity will
be signed by a trusted 3rd party, aka CA or
Certificate Authority

AWS Key Management Service Overview
● AWS Key Management Service (AWS KMS) is a managed service that provides an easy way for customers to create

and control customer master keys (CMKs), the encryption keys used to encrypt your data.

● Customer master keys are the primary resources in AWS KMS.

● The CMK contains the key material used to encrypt and decrypt data.

● The CMK also includes metadata, such as the key ID, creation date, description, and key state.

● AWS KMS supports symmetric and asymmetric CMKs.

● A symmetric CMK represents a 256-bit key that is used for encryption and decryption.

● An asymmetric CMK represents an RSA key pair that is used for encryption and decryption or signing and verification

(but not both), or an elliptic curve (ECC) key pair that is used for signing and verification. For detailed information

about symmetric and asymmetric CMKs

● AWS KMS CMKs are protected by hardware security modules (HSMs) that are validated by the FIPS-140-2 program

(except in China)

Slide content adopted source: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html

AWS KMS Overview

● CMKs are created in AWS KMS.

● Symmetric CMKs and the private keys of asymmetric CMKs never leave AWS KMS unencrypted.

● To manage CMK, both the AWS Management Console or the AWS KMS API be used.

● To use a CMK in crypto operations/applications, use the AWS KMS API.

● AWS KMS does not store, manage, or track your data keys. You must use them outside of AWS KMS.

● By default, AWS KMS creates the key material for a CMK. Customers cannot extract, export, view, or manage this key

material. Also, customers cannot delete this key material; but must delete the CMK.

AWS KMS Supported Customer Master Key
Customer Managed CMK AWS Managed CMK AWS Owned CMK

AWS Account owner/customer create, own,
and manage CMK. Customer managed CMK
can be used in crypto operations/applications
by the customer

AWS managed CMKs are created, managed,
and used on your behalf by an AWS service
integrated with KMS

AWS owned keys are common keys that may
be used across many AWS accounts or may
be specific to an AWS service that’s used
across all AWS accounts

It’s customer’s responsibility to
enable/disable/rotate key, define policy to
grant/deny access to CMK

Customer can neither manage these keys
(AWS KMS manages access policy, rotation
etc) nor use them in crypto operations

Customers can neither view nor manage these
keys

Many AWS services provides an option to
integrate customer managed CMK

AWS managed CMKs by their aliases, which
have the format aws/service-name, such as
aws/redshift

Customer Managed CMK is listed in the AWS
console under “Customer Managed Keys”

AWS managed CMKs appear on the AWS
managed keys page of the AWS Management
Console for AWS KMS

Customer Managed CMK is charged after the
free tier allowance is exceeded

Customer incurs no charge with AWS
managed CMK

Customer incurs no charge with AWS
managed CMK

AWS KMS Overview
● CMK - Customer Master Key
● Use AWS console to create customer managed

CMK
● Can be done using AWS CLI/SDK
● Use to create “data-keys” that can be used for

crypto operations
● Never leaves AWS

Data Key Creation

● Create Data Key using AWS CLI or
SDK

● AWS KMS provides both plaintext &
encrypted blob of the data key

● We will see this in the demo

Diagram source: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html

Encrypt Data

Diagram source: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html

● Use the datakey obtained in
the previous step to encrypt

● After this step both the
plaintext data & datakey can
be discarded

● We will see this in the demo

Decrypt Data

Diagram source: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html

● Use the encrypted Data Key
to obtain the “plaintext data
key” from AWS KMS using
AWS CLI or SDK

● Use the plaintext data key
along with the
encrypted/ciphertext to
decrypt

● We will see this in the demo

Envelope Encryption
● Master key is used to create data key and

encrypted data-key
● Plaintext data is encrypted with data-key
● This results in ciphertext
● Discard data-key & plaintext and store

only the ciphertext and encrypted data-key
● Master key itself can be encrypted with a

hierarchy of keys
● At the time of decryption, encrypted

data-key is provided to Master key, which
provides the original data-key

● Now the data-key will be used to decrypt
the encrypted data/ciphertext

Diagram source: AWS

Envelope Encryption in Action

Discard plaintext

Discard data-key
(plaintext) Both encrypted

data and encrypted
data-key are stored
Together at-rest

Only encrypted
data and encrypted
data-key are kept

Encryption Path

Decryption Path

Decrypt ciphertext
Stored at-rest

1

2

4

4

5

Create data-key
plaintext

Create encrypted
data-key

Plaintext +data-key
= ciphertext

3

6

7
Encrypted data-key
Sent to CMKPlain data-key

Provided by CMK

8

Ciphertext

10

9

Client Vs Server Side Encryption

AWS Storage services
(S3, EBS, RDS etc)

Client Side

Server Side

HTTP
or
TLS

Client side App performs
the crypto operation

Ciphertext

AWS Storage services
(S3, EBS, RDS etc) integrated
with KMS

HTTPS Plaintext
over TLS

Client side App generates
plaintext data

AWS KMS
Service

AWS KMS Demo
● Create Customer Managed CMK
● Use AWS CLI to generate data-key & encrypted data-key & save them locally
● Use openssl library to encrypt a file using data-key and save the encrypted/cipher file
● Discard data-key and plain-text
● Use AWS CLI to get the data-key using the encrypted data-key & save the data-key
● Use Openssl library to decrypt the encrypted file
● Verify that decrypt operation yields with the original plaintext
● Commands used for the demo: Assumes AWS CLI tool is installed
● aws kms generate-data-key --key-id alias/Demo --key-spec AES_256 --region us-east-1

● echo <unencrypted data-key> | base64 --decode > datakey

● echo <encrypted data-key> | base64 --decode > encrypted-datakey

● openssl enc -in ./data-file.txt -out ./encrypted-data-file.txt -e -aes256 -k fileb://./datakey -iter 1000

● aws kms decrypt --ciphertext-blob fileb://./encrypted-datakey --region us-east-1

● echo <unencrypted data-key> | base64 --decode > datakey
● openssl enc -in ./encrypted-data-file.txt -out ./unencrypted-data-file.txt1 -d -aes256 -k fileb://./datakey -iter 1000

