
Introduction to DNS
&

AWS Route53 Services
Overview

Agenda
● DNS Service Introduction

○ DNS Overview
○ How DNS Works?

● AWS Route53 Service Overview
● Unique Feature/Functionality Provided by Route53
● Route53 Service Demo

○ How to create Route53 Service?
○ Demo of some Route53 Features

Domain Name System Hierarchy

Source: https://www.cloudflare.com/en-au/learning/dns/glossary/dns-root-server/

Root Level

Top Level

Specific domain

Sub domain

Domain Name System Overview
● DNS Management/administration is done in a distributed or in a

decentralized manner
● DNS comprises of hierarchy of managed zone with “root” zone at the top of

the hierarchy
● ROOT DNS servers are the name servers responsible for root

zone/operate in root level
● ROOT DNS Servers answer queries for records within root zone (stored or

cached)
● ROOT DNS Servers refer “other” requests to the appropriate TLD/Top

Level Domain name servers
● TLD Name servers operate one level beneath the root DNS servers

Recursive Vs Iterative query diagram source:
https://www.slashroot.in/difference-between-iterative-and-recursive-dns-query

Recursive Vs Iterative Name Server
● Recursive servers do the actual name

lookup on behalf of DNS clients
● Will recursively query Root, TLD till it gets

to the authoritative NS for a given domain
● While it gets answers from Authoritative

NS, it will mark them as non-authoritative
when it forwards to the clients

● Answers from a query are stored/cached
for future lookups

● Iterative servers does not perform the
actual name lookup on behalf of DNS
clients

● Will provide an answer if it has an entry in
it’s cache

● If not it will provide only a referral service
to the DNS client (Root, TLD)

● Answers from a query are stored/cached
for future lookups (possibly query
originated from the NS)

Name Servers-Authoritative Name Server, Pri/Sec

● Provides Authoritative answer for one or
more Zone

● Master / Primary server normally loads
zone data from a file

● Secondary/Slave DNS servers can be
configured to get update from
master/primary using a process called zone
replication

● Primary/Secondary DNS essentially
provides redundancy/resilience and load
balancing functionality to DNS request

How Does DNS Route Traffic To Your Web Application?

Source: https://aws.amazon.com/route53/what-is-dns/

DNS Service hosted by Route53
AWS Service (But can be hosted
elsewhere)

Web Server can be hosted @
AWS cloud or can be hosted
elsewhere

DNS Resolver, can be on-prem or
Provided by 3rd party or your ISP

Root DNS Servers

Global top-level DNS Servers (.com)
Aka TLD for .com

Authoritative DNS Servers
For example.com domain

3

4

5

6

Step 1-7
DNS=UDP Port
53 Query

TCP session/
connection
HTTP/TLS to
the server

Root/TLD
NS are
iterative

DNS
Resolvers
are
recursive

Route53 DNS Service Overview

● Route53 is a Global AWS Services, spread across dozens of locations
worldwide

● Uses Anycast Infrastructure, Promises 100 % Availability
● Offers unique routing feature functionality such as:

○ Simple routing, round-robin, failover, low latency based, Geo routing etc

● Integrates with other AWS Services
● Can be managed via AWS console, AWS CLI or SDK

How to register a DNS Domain?
● Register a Domain name with a DNS Registrar

● Could be in AWS/Route53 or 3rd party

● Create a Hosted zone*

● Create DNS “Records” **

● Delegate your DNS hosted zone “NS” to TLD*

* : If done in Route53, this is automatically taken care of
** : NS and SOA records will be automatically created with Route53

Route53 AWS Console/Dashboard

Route53 AWS Console/Dashboard

Use below URL to get additional details on information to be provided to complete “domain name registration” using Route53
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-values-specify.html

What’s unique about Route53 DNS Service?
● One stop shop to do Domain name registration , delegation and zones are

created automatically

● Route53 performs health checks on your resources and is Integrated with

other AWS Services

● Offers variety of advanced routing feature

● AWS guarantees 100% availability

Route53 DNS Service Routing Policy
● Simple routing policy – Use to route internet traffic to a single resource that performs a given function for your

domain, for example, a web server that serves content for the example.com website.

● Failover routing policy – Use when you want to configure active-passive failover.

● Geolocation routing policy – Use when you want to route internet traffic to your resources based on the location of

your users.

● Geoproximity routing policy – Use when you want to route traffic based on the location of your resources and,

optionally, shift traffic from resources in one location to resources in another.

● Latency routing policy – Use when you have resources in multiple locations and you want to route traffic to the

resource that provides the best latency.

● Multivalue answer routing policy – Use when you want Route 53 to respond to DNS queries with up to eight

healthy records selected at random.

● Weighted routing policy – Use to route traffic to multiple resources in proportions that you specify.

Source: https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/route-53-concepts.html

Route53 Routing Policy

Route53 Create Hosted Zone

Route53 Created Hosted Zone

Route53 Create Record

Simple Route53 DNS Routing Policy

Amazon EC2 Instance or other
AWS Resource/Service or
Or Resource outside of AWS

DNS Simple and TTL based Routing
● Simple Routing is used when a resource record maps to a single resource
● Each record has a TTL and DNS clients caches the record for the duration of

TTL
● Upon Expiry of TTL, DNS CLient will try to update it’s cache by sending

another DNS query
○ Create two EC2 instance in two different AZ (EC2-1a & EC2-1f)
○ Create a record set (ttl-test) in the Route53 hosted zone of a domain (say test.com)
○ Make sure to use public IP address of EC2-1a for ttl-test.test.com
○ Check using nslookup/dig to see the name to ip address mapping and via the browser (also

check the TTL of the record in dig)
○ Now change the ip address for ttl-test.test.com record with EC2-1f’s IP
○ Route53 will update the record after the TTL expires

Route53 Alias vs CNAME based Routing
● “Alias” is AWS Route53 specific extension
● Maps record set to specific/select AWS

service domain name such as
ELB/S3/Cloudfront etc

● Alias allows mapping of recordset at the
“zone apex”

● If you have a domain name “test.com”,
Alias recordset can be used to map an
AWS resources/service to “test.com”

● There are no charges whatsoever for
using “Alias” recordset type

● Health checks can be configured for Alias
recordset type

● All DNS implementation supports CNAME
● Map record set to a canonical name
● CNAME does not allow recordset to be

mapped to “zone apex” using CNAME
type of record

● That’s using CNAME recordset type only
sub-level domain names can be mapped,
say to “www-internal.test.com” to
www.test.com

● As usual a very nominal charge will be
incurred by customer for using CNAME
(for usage over and beyond what AWS
offers for free)

● CNAME recordset type does not support
health checks (But the mapped resource
can have health check)

http://www.test.com
http://www.test.com

Route53 Alias vs CNAME based Routing

● Use the same EC2 instance that is used
for CNAME

● We will now create a new recordset, give it
a name “alias-test” ie.s alias-test.test.com

● Leave the type as “IP address” for this
recordset but we will select the “Yes” radio
button next to the field “Alias” (by default
this is “No”)

● Next choose the “Alias Target” using the
pull down arrow to point to the ALB that
was created

● Confirm the EC2 target is accessible using
the “Alias” record type

● There is no charge for querying/using alias
recordset type

● Run an EC2 instance and confirm it’s
running a web server

● Check to see if EC2 instance can be
accessed using it’s public IP or AWS
host/domain name

● Create ALB and put the EC2 behind ALB
● Create a recordset “cname-test” of type

“CNAME” under “test.com” hosted zone
● Use the ALB hostname as the “value” for

this record (not the IP address”
● Check and confirm that you can access

the EC2 instance using CNAME alias
record

Failover Route53 DNS Routing Policy
Amazon EC2 Instance or other
AWS Resource/Service or
Or Resource outside of AWS

Route53 depends on Health checks for Failover based DNS
routing , hence it’s mandatory to set up health check to be able
to use this feature

Primary

Failover

Instance #1*

Instance #2*

*: Instances could be in same or
Different Regions

Route53 Failover Routing
● Setup a second EC2 instance in region #2

and confirm it’s running a web server
● Check to see if EC2 instance can be

accessed using it’s public IP or AWS
host/domain name

● Create a health check @ Route53 (not
needed for secondary, but as a best practice
create)

● Create a Sec recordset “failover-test” of type
“IPv4” under “test.com” hosted zone

● Associate health check created for this EC2
instance (optional)

● Create a failure condition for primary EC2
instance

● Check and confirm that you can access the
EC2 instance using failover-test.test.com
record

● Setup a primary EC2 instance in region #1
and confirm it’s running a web server

● Check to see if EC2 instance can be
accessed using it’s public IP or AWS
host/domain name

● Idea is to setup Route53 routing such that
primary instance will be used all the time
and only use secondary if primary becomes
unhealthy/unavailable

● Create a health check @ Route53
● Create a Pri recordset “failover-test” of type

“IPv4” under “test.com” hosted zone
● Associate health check created for this EC2

instance (Mandatory)
● Check and confirm that you can access the

EC2 instance using failover-test.test.com
record

Geolocation Based Route53 DNS Routing Policy

Region1
us-west-1

WebSVR
EC2-Instance

Region2
ap-southeast-1

WebSVR
EC2-Instance

From North America

From Asia

Route53 Geolocation based Routing
● Setup three EC2 instance in various regions

and confirm they are running a web server
● Check to see if those EC2 instances can be

accessed using it’s public IP or AWS
host/domain name

● Create three recordset (with same name)
“geolocation-test” of type “IPv4” under
“test.com” hosted zone

● Make sure to select appropriate geolocation
of the EC2 instance

● Ensure a default geolocation based record is
there as a catchall record for other locations

● Check and confirm that you can access the
EC2 instance using geolocation-test.test.com
record from different geo location

● Use vpn to emulate users connecting from
different geo locations

● Route request based on where the DNS
query is originating from

● That is, Route53 routes DNS query from
users to AWS resources that are close to
the user geographical locations

● Used to provide localized content,
content that are prohibited in some
geography or for compliance reasons

● When defining DNS recordset, choose
routing type as “geolocation” based, record
type is still “ipv4)

● Make sure to select the appropriate Geo
location (can be selected down to state)

● Also create a record with “default” geo
location for users who originated DNS query
from other geo locations

Latency Based Route53 DNS Routing Policy

Region1
us-west-1

WebSVR
EC2-Instance

Region2
ap-southeast-1

WebSVR
EC2-Instance

150msec

200msec

Latency to DNS Resources are measured and DNS routing
Done based on lowest latency

Route53 Latency based Routing
● How does this work? Assume you have an

ELB/ALB ins US-West Region along with a
target and another ELB/ALB in Singapore
region with it’s target

● Say, your users are in UK/London region,
when they try to access your ELB/ALB (using
the domain name recordset, say a common
name Mapped to different ELB/ALB’s ip
address)

● Choose “latency” based routing type while
creating recordset, AWS automatically selects
the region based on the ip address (ipv4 type)

● Route53 will check to see the network latency
from UK/London to US west region and to
UK/London to SIngapore region

● Then picks the site that shows the lowest
network latency

● Scenario/Use case: Your application/web
servers are deployed in various AWS Regions

○ For obvious reasons, you want to serve your
users with application from a region that
provides the best performance (Network latency
based)

● Presume you have setup multiple recordset for
your various resources across geo
location/regions

● AWS will start to test/tabulate the latency
across all AWS global infra for those resources

● Based on a given user DNS query a Route53
server fields, it will then route the request to a
resource that has lowest latency

Weighted Round Robin Route53 DNS Routing Policy
Region1
us-west-1

WebSVR
EC2-Instance

Region2
ap-southeast-1

WebSVR
EC2-Instance

75

25

Assign weight to DNS Resource record and DNS routing
Done based on configured weights

AWS AMI User Data
#!/bin/bash
#Install Apache/httpd Web Server
yum update -y
sudo yum install jq -y
yum install -y httpd.x86_64
systemctl start httpd.service
systemctl enable httpd.service
echo “Web Server is running on $(hostname -f)” > /var/www/html/index.html
echo “ in region ” ; curl -s http://169.254.169.254/latest/dynamic/instance-identity/document | jq -r .region >> /var/www/html/index.html
echo “ on AZ” ; curl -s http://169.254.169.254/latest/dynamic/instance-identity/document | jq -r .availabilityZone >> /var/www/html/index.html
echo “Web Server is running using Public IP” ; curl -s http://169.254.169.254/latest/meta-data/public-ipv4 >> /var/www/html/index.html

http://169.254.169.254/latest/meta-data/public-ipv4

